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The concept of ‘optimal’ path in classical mechanics 
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Abstract. In this paper we discuss the significance of the concept of ‘optimal’ path in the 
framework of classical mechanics. Our derivation of the local harmonic approximation 
and self-consistent collective coordinate method equations of the optimal path is based 
on a careful study of the concepts of local maximal decoupling and global maximal 
decoupling respectively. This exhibits the nature of the differences between these two 
theories and allows us to establish the conditions under which they become equivalent. 

1. Introduction 

In a series of papers many authors (Rowe and Bassermann 1976, Rowe 1982, Marumori 
et a1 1980, Sakata et a1 1983, Villars 1977) proposed self-consistent theories of large 
amplitude collective motion. The starting points of all these developments is the 
time-dependent Hartree-Fock theory (TDHF) which gives the evolution in time of a 
Slater determinant. The space of Slater determinants was shown to be a simplectic 
manifold (‘phase space’), M, and the TDHF equations to be identical to Hamilton 
equations (Rowe et a1 1980). This makes it possible to cast all these theories in a 
classical language. Besides, most of the self-consistent theories of large amplitude 
collective motion simplify the problem further, by the so-called ‘adiabatic approxima- 
tion’ (Villars 1977, Goeke and Reinhard 1978). Given a configuration space C of M, 
its cotangent bundle T*C is a simplectic manifold. In the adiabatic approximation 
one assumes that the paths of M of physical interest lie sufficiently close to C that 
we might neglect, in the Hamitonian, powers of the momentum higher than quadratic. 
Subject to this restriction and considering the case of only one collective degree of 
freedom we can state that the basic theoretical problem addressed by these authors is 
to find an ‘optimal’ collective path in configuration space. This ‘optimal’ collective 
path gives rise to a two-dimensional subspace of the whole phase space and collective 
motion is identified with the motion of the system constrained to this subspace. The 
basic difference between these approaches stems from the distinct decoupling properties 
of its ‘optimal’ collective path. In the local harmonic approximation (LHA)  (Rowe 
and Bassermann 1976, Rowe 1982), the dynamics is analysed locally, i.e. in the vicinity 
of a point in the phase space. This analysis establishes, at each point, the decoupling 
properties of the local degrees of freedom. In other words, one finds the local normal 
modes. The points where there exists a maximally decoupled local degree of freedom 
define the LHA optimal path. It is clear that the LHA path is defined on the whole 
configuration space. However, notice that it was determined by a local analysis of the 
dynamics. On the other hand, in the self-consistent collective coordinate method ( S C C )  

(Marumori et a1 1980, Sakata et a1 1983), one requires a global decoupling. In this 
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case, the dynamics is analysed on the whole phase space, i.e. we consider the Hamilton 
equations on the whole phase space. The aim of this analysis is to find a maximally 
decoupled global degree of freedom. This maximally decoupled degree of freedom 
defines a curve in configuration space which is the 'optimal' path of the SCC method. 
The subspace of the phase space defined by this 'optimal' path is an invariant two- 
dimensional surface in phase space (Da Providhcia and Urbano 1982, Sakata et al 
1983). 

As a consequence of these developments, much progress has been made on the 
understanding of the concept of 'optimal' path which led to the appearance of applica- 
tions to nuclear collective motion (Goeke et a1 1983). In spite of this, many points 
deserve further clarification. The ones which we believe to be the most important are 
(i) a better understanding of the concept of local maximal decoupling and ( i i )  to 
explain the nature of the difference between the two approaches and to establish the 
conditions under which they become equivalent. This is done in our paper in the 
framework of classical mechanics. 

In § 2 we present our derivation of the LHA which is based on a careful study of 
the physical meaning of the concept of local maximal decoupling. In 0 3 we present 
our derivation of the SCC method based on the concept of global maximal decoupling. 
In § 4 we discuss in what respect these two approaches differ and establish the conditions 
under which they become equivalent. In § 5 we present our concluding remarks. We 
think that a detailed investigation of these concepts in the framework of classical 
mechanics, as is done in our paper, gives useful insights to future applications of these 
theories to quantum mechanics and many-body problems. One warning before starting: 
the mathematical level of our paper will be the simplest one compatible with a clear 
discussion of the concepts involved. 

2. Local maximal decoupling and the local harmonic approximation 

The configuration space of a classical system of N degrees of freedom is a manifold, 
C, of dimension N. In the Hamiltonian formalism a dynamical state of the system is 
a point in the phase space which is the cotangent bundle T*C of C. If q =  
( qo, q l ,  . . . , c y N - ' )  are the local coordinates of a point C and p = ( po, p , ,  . . . , p N - l )  the 
components of a covector at this point, the 2 N  numbers q = (qo, q l , .  . . , qN-') and 
p = (pol , . . , p N - l )  are the canonical coordinates in T*C. The N numbers p are the 
momenta associated to the N coordinates q. 

The canonical transformations which preserve the cotangent bundle structure of 
C, i.e. keep the Hamiltonian quadratic in the momenta, are the point transformations, 
defined by 

and its inverse 

(2.lb) 

These transformations, equations (2.11, will be the only ones considered in this paper. 
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The time evolution of the system in the phase space is given by the Hamilton 
equations 

q ' = d H / d p ,  p '  = - a H / a q '  (2.2) 

H = t x  B " ( q ) p t p j + v ( q )  (2.3) 

where 

1J 

is the Hamiltonian of the system. The transformation (2.1) changes the Hamiltonian 
(2.3) to 

R ( , j ) = f C  B'J(Q)plpJ+ q q )  (2.4) 
1J 

where 

(2.5) 

The equations (2.1) and (2.5) 5how that, by a change o f  coordinates, the potential 
V ( q )  transforms as a scalar, the B"q) transform as the components of a second-rank 
tensor and the momenta transform as the components of a covector. 

Using the expression (2.3) of the Hamiltonian, the Hamilton equations can be 
written as 

In equation (2.6) {,:} are the components of the metric connection (Christoffel 
symbols) induced by the tensor B " ( q )  (Synge and Schild 1969): 

I 

A possible interpretation of what we have just shown is that the trajectory of the 
system in configuration space is a curve in a Riemannian manifold whose metric tensor 
is the mass tensor, M , ( q ) .  

Our next step is to study the dynamics of the system in the neighbourhood of an 
equilibrium point, Po. In this case one has 

where ( q ) p o  and ( P ) ~ ,  are the coordinates and the momenta of the equilibrium point. 
Near Po, the Hamiltonian (2.3) can be written as 

where 
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q and p being the coordinates and the momenta of a point in the neighbourhood of 
Po. In (2.8) ( V)pn, (Bij)pn and are, respectively, the potential, the contravariant 
components of the mass tensor and the covariant components of the elastic tensor at 
Po, 

(V),= ( v(4 ) )4= (q )po  ( 2 . 9 ~ )  

(B Po = (B 4 ) )  q =  ( 4  ) p ,  (2.96) 

(2 .9~)  

Notice that (K,J)Po, given by equation (2.9c), is a tensor only at an equilibrium 
point. Furthermore, (2.8) defines the local Hamiltonian at the point Po. Given (2.8) 
the Hamilton equations near Po can be written as 

4 '  =c ( B L J ) P , P J  B , = - C ( K  q 1 P 0 f f J .  (2.10) 
J J 

It is well known that the Hamiltonian (2.8) can be diagonalised by a linear 

.ql=c d(k"cyk (2.11~1) 

transformation which defines the normal modes at Po: 

k 
51 =E a:ijPk 

k 

(2.11 b )  

In (2.11) d' means the transpose of a and d, 8, k, M are matrices whose elements 
are A,  = a; , , ,  Ql = d;", K1 = ( K U ) ~ o  and MI = (MIJ)pn. 

As and are tensors at Po, the proper frequencies A,  are independent 
of the system of coordinates and the a:,,, k = 0, . . . , N - 1 ( i  fixed) are the contravariant 
components of a vector at the point Po, which is the ith local normal mode vector. 
Using the transformation (2.1 l),  the Hamiltonian and the Hamilton equations near 
Po are given by 

ff'(5, r , ) = ( V ) ~ , + ~ C ( 5 f + h r r l " ) + . . .  (2.12) 
I 

4 '  = 51 5, = - A , q ' .  (2.13) 

The equations (2.12) and (2.13) show that the local normal modes are decoupled degrees 
of freedom at Po. Besides, each pair l,, .q', i = 0, . . . , N - 1 defines, at the point Po, an 
invariant plane in phase space. Xpn is an invariant plane at the point Po if, given that 
ao, Po is a point in this plane, (U( C ) ,  p(  C )  remains on it, where a( c), p (  C) are solutions 
of the Hamilton equations (2.10) with the initial condition ao= a ( ~ ) l , = ~ ,  Po= P ( t ) l t z o .  
A degree of freedom which at a fixed point is decoupled and defines an invariant plane 
at this point will be called a maximally decoupled local degree of freedom. Therefore, 
the normal modes are maximally decoupled degrees of freedom at an equilibrium point. 

The question now is to see if one can find maximally decoupled local degrees of 
freedom, in the sense discussed above, outside an equilibrium point. We will answer 
this question using an approach identical to the one used previously. In doing so we 
should take into account the fact that the concepts of local normal modes and proper 
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frequencies must have an intrirlsic character. It is clear from our previous discussion 
that once the coefficients of the quadratic term of the local Hamiltonian are tensors, 
the above properties are guaranteed to hold. The immediate conclusion from the above 
observations is that to define the local Hamiltonian at a given point Po we should use 
a system of coordinates for which the covariant derivative is equal to the partial 
derivative at Po. A coordinate system with this property always exists and it is called 
a geodesic coordinate system at the point Po (Rowe 1982). However the concept of 
covariant derivative depends on the metric connection and it is possible to consider 
several metric connections in the same manifold. Each one will give rise to different 
definitions of covariant derivative and so different definitions of the local Hamiltonian. 
Thus, to define the local Hamiltonian outside an equilibrium point one has to choose 
a priori a metric connection. In our case, since the Hamiltonian is quadratic in the 
momenta, the metric is naturally dictated by the dynamics and it is the metric connection 
induced by the mass tensor (2.7). 

Under the coordinate transformation (2.1), the metric connection transforms 
according to (Synge and Schild 1969): 

(2.14) 

A geodesic coordinate system at a point Po is such that (Synge and Schild 1969): 

{i] = 0. (2.15) 

The property (2.15) guarantees that the covariant derivative and the partial derivative 
are equal at the point Po. 

Given that the coordinates 4 are geodesic coordinates at the point Po we define 
the local Hamiltonian as before 

where 

and 

(2.16) 

( 2 . 1 7 ~ )  

(2.17b) 

( 2 . 1 7 ~ )  

(2.17d) 

The equations (2.17) deserve several comments. Firstly equation (2.17d) shows that 
the generalisation of the elastic tensor outside an equilibrium point is the hessian, 
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where the hessian is the second covariant derivative of the potential. Secondly, since 
Po is not an equilibrium point, a linear term appears in the expression of the local 
Hamiltonian, (2.16). This term depends on the potential gradient field at Po, as 
expected. Given (2.16), the Hamilton equations near Po can be written as 

(2.18) 

As before we diagonalise the quadratic term of the Hamiltonian (2.16) by a linear 
canonical transformation which defines the local normal modes: 

if 

(2.19) 

and the a{ ! ,  and di')  satisfy the equations (2.11b), remembering that now 
(K,,),, are, respectively, the mass tensor and the hessian, (2.17d), at the point Po. 

equations (2.18) can be written as 

and 

Under the transformation (2.19) the local Hamiltonian (2.16) and the Hamilton 

(2.20) 

7i' = 51 -i, = K, + Atv'. (2.21) 

In these equations K ,  is the component of the gradient vector field at Po in the direction 
of the ith local normal mode vector: 

(2.22) 

The equations (2.20) and (2.21) show that the local normal modes are decoupled 
degrees of freedom at Po. However, since the gradient vector field does not vanish at 
Po, in general the pairs lt, vi, i = 0, . . . , N - 1 are not invariant planes at Po. A local 
normal mode defines an invariant plane at Po only if the gradient vector field at this 
point is in the direction of this normal mode. Denoting this maximally decoupled 
local degree of freedom by vo, lo, the above condition gives 

(2.23) 

So a maximally decoupled local degree of freedom exists at the point Po only if 
the following equations are satisfied at this point: 

(2.246) 

( 2 . 2 4 ~ )  

The first two equations define the local normal modes and the last one shows that the 
zeroth normal mode is maximally decoupled. These equations are the local harmonic 
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approximation equations of Rowe and Bassermann (1976). To proceed in our dis- 
cussion we can easily see that the equations (2.23) are satisfied once one has 

From (2.24) and (2.11b) it follows that 

(2.25) 

(2.26) 

Thus we can state that a maximally decoupled local degree of freedom exists only 
at the points where the gradient vector field is a local normal mode vector (Rowe 
1982). It can be easily shown that the points in configuration space where this condition 
holds are the ones in which the variation of lgrad VIz in an equipotential surface 
vanishes (Rowe and Ryman 1982). The curves which follow these points are called 
stationary paths (Rowe and Ryman 1982). Therefore we conclude that a maximally 
decoupled local degree of freedom exists only at points in a stationary path. Physically 
we are interested in the stationary path which is a valley of the potential (if it exists). 
In this case the stationary path is a minimal path which goes through the point of 
minimum of the potential and when we leave this point, A. is the smallest proper 
frequency which becomes the only unstable one at large amplitudes. So the minimal 
curve is a valley if (Rowe and Ryman 1982) 

(2.27) 

where ( X ) ,  is a vector perpendicular to the gradient field at a point Po in the minimal 
path: 

(2.28) 

Defining the equation of the valley path by q' = g ' ( T o ) ,  one has, using (2.26) 

(2.29) 

In configuration space, we consider a normal coordinate system (Synge and Schild 
1969) such that one of the orthogonal trajectories is the valley path, q i  = gi(To) where 
7' is the arc length. In this case the equation of the two-dimensional surface in phase 
space is 

(2.30) 

In the LHA the optimal collective path is the valley path, the collective motion is 
the motion of the system constrained to the surface (2.30) generated by the valley path 
and the collective variables, the pair of canonical variables which span this surface, 
are qo and io. 



1340 E J V d e  Passos and F F de Souza Cruz 

3. Global maximal decoupling and the self-consistent collective coordinate method 
(see) 

In the approach of Marumori and collaborators (Marumori et a1 1980, Sakata er a1 
1983) the idea is to find a maximally decoupled subspace of' the whole phase space. 
In the case of one collective degree of freedom this subpace is a two-dimensional 
phase space which defines an invariant surface in the whole phase space (Da Providh-  
cia and Urbano 1982). By definition 2 is an invariant surface in phase space if, given 
that the system is initially in this surface, it remains on it. In other words there exist 
solutions of the Hamilton equations such that if qo and p o  are in E, q( t )  and p (  t )  
remain on 2, where p ( t )  and q ( t )  are solutions of the Hamilton equations with the 
initial conditions 

d o )  = 40, P ( 0 )  = P o .  

To establish the conditions which define the maximally decoupled subspace in our 
case, consider the point transformation: 

9' = g'(17)  77' =f ' ( Q )  

Under (3.1) the Hamiltonian transforms to (equations (2.4) and (2.5)): 

Q(17) = V(g(17) ) .  

77' = 5, = 0 i # 0. (3.3) 

A two-dimensional subspace of the whole phase space is defined by the equations 

The equations (3.3) of the two-dimensional surface in phase space can be written as 

= (g ' ) ,o=  g'(77O) i = O ,  . . . ,  N - 1  (3.4a) 

(3.4b) 

(3.4c) 

where we use the notation 

etc. ($) l o  = (5) r) =(T?O.O ,..., 0 )  

Now the requirement that (3.3) is a maximally decoupled subspace imposes that 

[$] = o  [$I = o  i = l ,  . . . ,  N - 1  
I 0 . i O  ? O . i O  

(3.5) 
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where we use the notation 

Furthermore, the evolution of the system in the maximally decoupled subspace is 
given by 

The equations (3.5) are the Marumori equations of 
subspace (Sakata et a1 1983). Given (3.2) these equations 

( B‘O) ’Io = 0 i # O  

($) n = o  i#O 
‘I (5) = o  i # 0. 

’In 

the maximally decoupled 
can be rewritten as 

( 3 . 7 ~ )  

(3.76) 

(3.7c) 

The equations (3.7) are easily seen to be equal to Villars equations ( I ) ,  (11) and (111), 
respectively (Villars 1977). To establish the geometrical properties of the maximally 
decoupled subspace we use the equations (3.2) and (3.4) to write equations (3.7) as 

(3.8b) 

( 3 . 8 ~ )  

where we set the scale such that 7’ is the arc length along the curve q’ = g ’ ( v o ) .  The 
equations (3.8b) show that the curve q l = g ’ ( v o )  is a gradient line and the equation 
( 3 . 8 ~ )  that it is a geodesic line. Therefore the curve ( 3 . 4 ~ )  is a geodesic gradient line 
(in a manifold whose metric tensor is the mass tensor). The equations ( 3 . 8 ~ )  only 
impose that the coordinate lines v’( 7’ = constant, j f i), i f 0, cross the geodesic 
gradient line perpendicularly and a coordinate system with this property always exists 
(Synge and Schild 1969). What we have just shown tells us that a maximally decoupled 
subspace (when it exists) is such that the curve q’ = g ’ (  7’) is a geodesic gradient line. 
However, from a physical point of view, not all maximally decoupled subspaces are 
of interest. We should add the boundary condition that near the minimum the surface 
should coincide with the plane of the lowest frequency normal mode. Besides, only 
the stable ones should be considered. To see what that means, suppose that the 
two-dimensional subspace (3.4) is maximaliy decoupled. The pair of canonical vari- 
ables T O ,  lo which span this subspace will be identified with the collective degree of 
freedom and the other pairs of canonical variables, v’, l,, i = 1, . . . , N - 1, with the 
non-collective ones. The stability condition of a maximally decoupled subspace 
depends on the coupling properties of the collective and non-collective degrees of 
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freedom. To study this coupling let us expand the Hamiltonian (3.2) to second order 
in the non-collective degrees of freedom (Sakata et al 1983): 

where 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

where i, j # 0. The equations of motion for the non-collective degrees of freedom, to 
first order in these variables, are given by 

(3.14) 

(3.15) 

where T O (  r )  and io( t )  are the solutions of the Hamilton equations constrained to the 
maximally decoupled subspace (3.6): 

eo(?) = i O ( t )  i o ( t )  = - ( ~ V c o l , / a 7 7 ° ) ( 7 7 0 ) .  

A maximally decoupled subspace is stable if, given that i , ( t ) l ,=o  and 771(t) l I=0,  i f  0, 
is small, then i , ( t )  and v l ( t )  remain small, where i , ( t )  and T I ( ? )  are solutions of the 
equations (3.15). 

Finally notice that the equation (3.9) gives another criterion to identify a maximally 
decoupled subspace: the coupling of the collective variables and the non-collective 
ones is at least second order in these last variables. 

4. Global maximal decoupling versus local maximal decoupling 

The discussion in § 2 has shown that one can find a maximally decoupled local degree 
of freedom only at points in a stationary path. Furthermore, physical considerations 
indicate that a collective path should be associated with a minimal path which is a 
valley. However in general these curves are not integral curves of the potential gradient 
field (it is not a gradient line) as can be seen in figure 2 of Rowe and Ryman (1982). 
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To see this note that at each point in the stationary path we can define the normal 
mode vectors, the potential gradient vector and the tangent vector to the stationary 
path. As this path is a stationary path, the potential gradient is in the direction of one 
of the normal modes. However, in general, the tangent vector is not in the direction 
of the potential gradient. A consequence of this fact is that motion along a stationary 
path is not motion along a maximally decoupled local degree of freedom. On the 
other hand, when the stationary path is a gradient line, at each point on it the tangent 
is in the direction of the maximally decoupled local degree of freedom. In this case 
motion along a stationary path is motion along a maximally decoupled local degree 
of freedom. 

To see under what conditions this is accomplished consider the equation of the 
stationary path 9’ = g ’ (  T O ) ,  where 7’ is the arc length of the curve. Imposing that the 
stationary path be also a gradient line, g ’ (  7’) should obey the equations 

besides equations (2.29). 
However (2.29) and (4.1) leads to 

(4.1) 

which is the equation of a geodesic in a manifold whose metric tensor is the mass 
tensor. In this case the stationary path is necessarily a geodesic line and so, a geodesic 
gradient line. When this condition is satisfied the two approaches are equivalent. 
Therefore, the requirement that motion along a stationary path be motion along a 
maximally decoupled local degree of freedom is satisfied only if the stationary path 
defines a maximally decoupled global degree of freedom. 

5. Conclusions 

Many proposals of ‘optimal’ collective paths have appeared in the literature. The 
geometrical properties of three of the proposals turn out to be natural (de Passos 
1982) once one notices that the potential gradient and the local normal modes are 
vector fields in the configuration space C. The ‘optimal’ path of Villars (Villars 1977, 
Goeke and Reinhard 1978) is an integral curve of the potential gradient field and the 
one of Moya de Guerra (Moya de Guerra and Villars 1977) is an integral curve of the 
normal mode field. The points where these two vector fields are parallel define the 
LHA ‘optimal’ path (Rowe and Bassermann 1976, Rowe 1982). In general these 
requirements do not select a unique path (Goeke et a1 1981). The Villars path is not 
uniquely defined since a gradient line goes through every point. Furthermore, the 
lowest frequency normal mode at the potential minimum cannot be used to select 
one particular gradient line since, at this point, all gradient lines are tangent to it 
(Rowe 1982). However when the potential energy surface has a saddle point it was 
suggested to adopt the gradient line from the saddle point to the minimum as the 
‘optimal path’ (Goeke et a1 1981). In the case of the Moya de Guerra path one selects 
the integral curve of the lowest frequency normal mode, which goes through the point 
of minimum. In the LHA one selects the minimal valley path as the ‘optimal’ collective 
path. On the other hand, the ‘optimal’ path of the SCC method (Marumori et a1 1980, 
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Sakata et a1 1983) define an invariant two-dimensional subspace of the whole phase 
space. In this paper we investigate in detail two proposals of ‘optimal’ path, one based 
on the LHA and the other on the SCC method. This is done in the framework of classical 
mechanics. The fundamental point in our derivation of the LHA is the concept of local 
maximal decoupling. A careful study of its physical meaning shows that it depends 
on an a priori choice of a metric connection in the configuration space manifold. Each 
choice will give rise to different decoupling requirements and, as a consequence, 
different ‘optimal’ paths. In our case the choice is naturally dictated by the dynamics 
and it is the metric connection induced by the mass tensor. Once this choice is made 
we show how to derive the equations of the optimal path by imposing that at each 
point on it there exists a maximally decoupled local degree of freedom. The points 
where this condition is satisfied are such that the gradient vector field is in the direction 
of a local normal mode in a manifold whose metric tensor is the mass tensor. It is 
also shown that the curves which follow these points are stationary curves. On the 
other hand, in the SCC method one tries to find a maximally decoupled subspace of 
the whole phase space. This subspace defines an invariant surface in phase space and 
in our case it is the surface generated by a geodesic gradient line in the configuration 
space. Thus one sees that in the SCC method one requires a global maximal decoupling. 
When this condition is satisfied the invariant surface is an example of a Baranger- 
Veneroni (1978) spaghetto. From our discussion it is clear that the condition of local 
maximal decoupling is always satisfied but not that of global maximal decoupling. 
The difference stems from the fact that, in general, motion along a stationary path is 
not motion along a maximally decoupled local degree of freedom. When we investigate 
under what conditions motion along a stationary path is motion along a maximally 
decoupled local degree of freedom, one sees that this happens only if this curve is 
also a gradient line, in which case it becomes a geodesic gradient line. In this case 
the stationary path defines an invariant two-dimensional subspace of the whole phase 
space and the ‘optimal’ paths of the LHA and SCC methods coincide. Furthermore, 
one sees, by what we said above, that this curve is also a Villars path (it is a gradient 
line) and a Moya de Guerra path (it is an integral curve of the normal mode field 
since it is a stationary path which is a gradient line). 
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